
Fibonacci numbers

The Fibonacci sequence is named after Italian mathematician Leonardo of Pisa,

known as Fibonacci:

https://en.wikipedia.org/wiki/Fibonacci_number

The Fibonacci numbers fn = f(n) are the numbers characterized by the fact that

every number after the first two is the sum of the two preceding ones. They are defined

with the next recurrent relation:

)2()1(

1 ,1

0 ,0

)(

nfnf

nif

nif

nf

So f0 = 0, f1 = 1, fn = fn-1 + fn-2.

The Fibonacci sequence has the form

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …

Example. Fill integer array fib with Fibonacci numbers (fib[i] = fi):

#include <stdio.h>

int i, n, fib[47];

int main(void)

{

 scanf("%d",&n);

 fib[0] = 0; fib[1] = 1;

 for(i = 2; i <= n; i++)

 fib[i] = fib[i-1] + fib[i-2];

 printf("%d\n",fib[n]);

 return 0;

}

0

0

1

1

1

2

2

3

3

4

5

5

fib[i]

i

8

6

13

7

21

8

34

9

55

10

...

...

The biggest Fibonacci number that fits into int type is

f46 = 1836311903

The biggest Fibonacci number that fits into long long type is

f92 = 7540113804746346429

If you want to find Fibonacci number fn for n > 92, use BigInteger type.

Example. Find f(n) – the n-th Fibonacci number with recursion:

#include <stdio.h>

https://en.wikipedia.org/wiki/Fibonacci_number

int n;

int fib(int n)

{

 if (n == 0) return 0;

 if (n == 1) return 1;

 return fib(n-1) + fib(n - 2);

}

int main(void)

{

 scanf("%d",&n);

 printf("%d\n",fib(n));

 return 0;

}

f(4)

f(3) + f(2)

f(2) + f(1) f(1) + f(0)

f(1) + f(0)

f(2) + f(1)

f(1) + f(0)

f(3)+

f(5)

Example. Find f(n) – the n-th Fibonacci number with recursion + memoization:

#include <stdio.h>

#include <string.h>

int n, fib[46];

int f(int n)

{

 // base case

 if (n == 0) return 0;

 if (n == 1) return 1;

 // if the value fib[n] is ALREADY found, just return it

 if (fib[n] != -1) return fib[n];

 // if the value fib[n] is not found, calculate and memoize it

 return fib[n] = f(n-1) + f(n - 2);

}

int main(void)

{

 scanf("%d",&n);

 // fib[i] = -1 means that this value is not calculated yet

 memset(fib,-1,sizeof(fib));

 printf("%d\n",f(n));

 return 0;

}

f(4)

f(3) + f(2)

f(2) + f(1)

f(1) + f(0)

f(3)+

f(5)

mem

mem

Java code

import java.util.*;

public class Main

{

 static int fib[] = new int[46];

 static int f(int n)

 {

 if (n == 0) return 0;

 if (n == 1) return 1;

 if (fib[n] != -1) return fib[n];

 return fib[n] = f(n-1) + f(n - 2);

 }

 public static void main(String[] args)

 {

 Scanner con = new Scanner(System.in);

 int n = con.nextInt();

 Arrays.fill(fib, -1);

 System.out.println(f(n));

 con.close();

 }

}

E-OLYMP 4730. Fibonacci Fibonacci numbers is a sequence of numbers F(n),

given by the formula:

F(0) = 1, F(1) = 1, F(n) = F(n – 1) + F(n – 2)

Given value of n (n ≤ 45). Find the n-th Fibonacci number.

► Implement a recursive function with memoization.

https://www.e-olymp.com/en/problems/4730

NO two one’s in a row

Find the number of sequences of length n, consisting only of zeros and ones, that

do not have two one’s in a row.

Let f(n) be the number of sequences consisting of 0 and 1 of length n that do not

have two one’s in a row.

f(1) = 2

0

1

0

0

1

0

1

0

f(2) = 3

0

1

1

1

0

0

f(3) = 5

0

0

0

0

0

0

1

0

1

If the first number in the sequence is 0, then starting from the second place we can

build f(n – 1) sequences. If the first number in the sequence is 1, then second number

should be 0.

f(n)

n

= 0 f(n-1)

n-1

+ f(n-2)

n-2

1 0

We have Fibonacci numbers with base cases f(1) = 2, f(2) = 3.

E-OLYMP 263. Three ones Find the number of sequences of length n, consisting

only of zeros and ones, that do not have three one’s in a row.

► Let f(n) be the number of required sequences consisting of 0 and 1 of length n.

If the first number in the sequence is 0, then starting from the second place we can build

f(n – 1) sequences. If the first number in the sequence is 1, then second number can be

any (0 or 1). If second number is 0, on the next n – 2 free places we can construct f(n –

2) sequences. If second number is 1, the third number must be exactly 0, and starting

from the forth place we can construct f(n – 3) sequences.

f(n)

n

= 0 f(n-1)

n-1

+ f(n-2)

n-2

1 0

+ f(n-3)

n-3

1 01

We have the recurrence: f(n) = f(n – 1) + f(n – 2) + f(n – 3). Now we must

calculate the initial values:

f(1) = 2, since there are two sequence of lengths 1: 0 and 1.

f(2) = 4, since there are four sequence of lengths 2: 00, 01, 10 and 11.

f(3) = 7, since there are seven sequence of lengths 3: 000, 001, 010, 011, 100, 101

and 110.

https://www.e-olymp.com/en/problems/263

Do not forget to run all operations modulo 12345.

f(1) = 2

0

1
f(2) = 4

01

10

00

11

f(3) = 7

01

10

00

11

0

1

+

0
0

1

+

1 1 0

=
001

010

000

011

=

100

101

= 110

E-OLYMP 4469. Domino Find the number of ways to cover a rectangle 2 ×

n with domino of size 2 × 1. The coverings that turn themselves into symmetries are

considered different.

► Let f(n) be the number of ways to cover the 2 × n rectangle with 2 × 1

dominoes. Obviously, that

 f(1) = 1, one vertical domino;

 f(2) = 2, two vertical or two horizontal dominoes.

f(1) = 1 f(2) = 2 f(3) = 3

Consider an algorithm for computing f(n). You can put one domino vertically and

then cover a rectangle of length n – 1 in f(n – 1) ways, or put two dominoes horizontally

and then cover a rectangle of length n – 2 in f(n – 2) ways. That is, f(n) = f(n – 1) + f(n –

2).

f(n)

n

= f(n-1)

n-1

+ f(n-2)

n-2

So f(n) is the Fibonacci number.

https://www.e-olymp.com/en/problems/4469

f(4) =

Since n < 65536, long arithmetic or Java programming language should be used.

E-OLYMP 5091. Explosive containers You have two types of boxes: with trotyl

(TNT) or without. You must build with boxes a tower of height n. In how many ways

can you do it if it is forbidden to put TNT box on TNT box because of explosion.

► Let's code the empty box with 0 and the box with TNT with 1. In the problem

we must find the number of strings of length n consisting of 0 and 1, in which two ones

are not adjacent. The answer to the problem will be the Fibonacci number f(n):

)2()1(

2 ,3

1 ,2

)(

nfnf

nif

nif

nf

Consider all possible towers of height n = 1, n = 2, n = 3. Each of them

corresponds a sequence of 0 and 1. There are:

 two towers of height 1;

 three towers of height 2;

 five towers of height 3;

TNT

0 1

TNT

00 01 10

TNT

TNT

000 001 010

TNT

100

TNT

101

TNT TNT

E-OLYMP 5092. Honeycomb The bee can go in honeycomb as shown in the

figure – with moves 1 and 2 from upper row and with move 3 from the lower.

Find the number of ways to get from the first cell of the top row to the last cell of

the same row.

► Enumerate the honeycomb in the next way:

https://www.e-olymp.com/en/problems/5091
https://www.e-olymp.com/en/problems/5092

1

2 4 6

3 5 7

...

...

2n-2

2n-1

Let f(k) be the number of ways to get from the first honeycomb into the k-th one. If

upper row contains n honeycomb, the number of rightmost honeycomb of upper row

has number 2n – 1. So the answer to the problem will be f(2n – 1).

kk - 21

k - 3

k + 1k - 11

k

If k-th honeycomb is located in the upper row, the bee can come into it either from

(k – 2)-th honeycomb, or from (k – 3)-th. So f(k) = f(k – 2) + f(k – 3) for odd k.

If k-th honeycomb is located in the lower row, the bee can come into it only from

(k – 1)-th honeycomb. So f(k) = f(k – 1) for even k.

Calculate the base cases separately: f(1) = 1, f(2) = 1, f(3) = 1.

E-OLYMP 8295. Fibonacci string generation Generate the n-th Fibonacci string

that is defined with the next recurrent formula:

 f(0) = "a";

 f(1) = "b";

 f(n) = f(n – 1) + f(n – 2), where "+" operation means concatenation

For example, f(3) = f(2) + f(1) = (f(1) + f(0)) + f(1) = "b" + "a" + "b" = "bab".

► Implement a recursive function that generates the n-th Fibonacci string.

string f(int n)

{

 if (n == 0) return "a";

 if (n == 1) return "b";

 return f(n-1) + f(n-2);

}

Read input value of n and print the n-th Fibonacci string.

cin >> n;

cout << f(n) << endl;

https://www.e-olymp.com/en/problems/8295

